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Ordering in antiferromagnetic Potts models? 

B Hoppe and L L Hirst 
Institut fur Theoretische Physik, Universitat Frankfurt, 6 Frankfurt am Main, West Germany 

Received 1 April 1985 

Abstract. Ordering in the antiferromagnetic Potts model on a simple cubic lattice with 
9 = 3 or 4 states per ion is investigated by Monte Carlo computer experiments. The results 
are analysed by forming the ion-pair correlation function, a technique permitting a more 
reliable identification of long-range order. In agreement with Banavar et al, we find a 
continuous phase transition to a two-sublattice ordered phase. The Monte Carlo results 
are used to test the mean-field approximation, which is found to yield qualitatively correct 
results for q = 3 and 4, although exaggerating the ordering tendencies. 

1. Introduction 

The Potts model (Potts 1952, Wu 1982) is a semiclassical model in statistical mechanics 
which can be regarded as a generalisation of the Ising model. The Hamiltonian of the 
q-state Potts model can be written as 

r =  1,2 , .  . . , q 

where ( l r ) ( r l ) i  is a projection operator for the state Ir) at site i and the first summation 
is over all nearest-neighbour pairs. The antiferromagnetic case ( J  < 0) has received 
less investigation than the ferromagnetic case ( J  > 0), but the antiferromagnetic Potts 
model on a simple cubic (sc) lattice with q = 3  or 4 states per ion was recently 
investigated by Banavar et a1 (1982) using Monte Carlo (MC) methods. These authors 
found indications for a continuous phase transition into a phase with long-range order 
in a two-sublattice scheme for both q = 3 and q = 4. Since the ionic polarisations 
obtained remain unsaturated in the low-temperature limit, it seems desirable to further 
check whether the non-zero values of the order parameter yielded by their MC calcula- 
tions for a finite system might not result from short-range order only. 

For this reason we have made new MC computations for the antiferromagnetic 
Potts model with 3 or 4 states per ion on the sc lattice. In addition to the usual plots 
of thermodynamic functions and a global order parameter, we have analysed our MC 

data by looking at ion-pair correlations as a function of interionic distance, which is 
found to provide an especially sensitive test for long-range order. We have also 
evaluated the simpler mean-field approximation and compared it to the MC results. 

'f Project of the Sonderforschungsbereich fur Festkorperspektroskopie Darmstadt-Frankfurt, supported by 
the Deutsche Forschungsgemeinschaft. 
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2. Monte Carlo results 

We have applied standard Monte Carlo techniques as recently reviewed by Binder 
(1979). The system typically used was an 18 x 18 x 18 lattice with periodic boundary 
conditions, with averaging performed over 800 MC steps per site. Results at low 
temperatures were obtained by cooling down from a high-temperature random configur- 
ation as discussed by Banavar et a1 (1982). 

The pair correlation function f( R )  gives the probability of finding two ions i and 
i f  at a distance R in the same state and is defined as 

where (( )) denotes the thermodynamic average, r is summed over the q single-ion 
states, i is summed over the N sites of the lattice, and i' is fixed relative to i by 
Ri,- R, = GR where U* is a unit vector along one of the cube axes. 

The correlation functions obtained for the three- and four-state models are shown 
in figures 1 and 2. At high temperatures we see short-range correlations which decay 
rapidly toward the value l / q  corresponding to uncorrelated ions as the separation R 
increases. At low temperatures the correlation function does not approach 1/ q at large 
R but instead oscillates between different limiting values for even and odd R. This 
corresponds to ordering on the same scheme of two interpentrating FCC sublattices 
identified by Banavar et al (1982). 

A global order parameter corresponding to the above ordering scheme may be 
defined by 

M ( T )  IPr(A)-Pr(B)I (3 1 
r 

where A and B label the two sublattices and Pr is the average population per ion of 
state r on the given sublattice. The dependence of this order parameter on temperature 
is shown in figures 3 and 4. 

The MC data also yield curves (not shown) for the internal energy and specific heat 
as obtained from the energy fluctuations (Binder 1979). By integrating the internal 
energy over the inverse temperature (Binder 1981) we obtain the values for the 
zero-point entropy per ion listed in table 1, which for q = 3 and q = 4 are 34% and 
51%, respectively, of the value In q holding in the high-temperature limit. Also included 
in table 1 are MC values for the ordering temperature T, and for the order parameter 
as extrapolated to T = 0. Following prevailing practice, we take T, as the turning point 
of M (  T ) ,  and the numerical uncertainty of this determination is also listed in table 1. 
The maximum of the specific heat defines values of T, consistent with these, but with 
a considerably larger uncertainty. Table 1 and figures 1-4 pertain to calculations on 
crystals of L3 ions where L= 18 or 20 for q -4 or 3, and supplementary calculations 
with L = 10 and 14 failed to yield any significant dependence of the results on crystal 
size. 

3. The mean-field approximation 

It is of interest briefly to compare the quasi-exact MC results obtained above to those 
yielded by the simpler MFA method. 
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Figure 2. Monte Carlo results for the pair correlation function f ( R )  in the four-state 
antiferromagnetic Potts model. ( a )  and ( b )  show high- and low-temperature curves, 
calculated for T = 0.84 IJl/k, and T =  0.35 lJl/kB respectively. For comparison the ordering 
temperature is T, = 0.68 IJI/k,. 
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Figure 3. The order parameter M ,  as yielded by the mean-field approximation (full curve) 
and the Monte Carlo method (dots) for the three-state antiferromagnetic Potts model, 
plotted against the dimensionless inverse temperature 1/ t = J / k , T  
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Figure 4. The order parameter M, as yielded by the mean-field approximation (full curve) 
and the Monte Carlo method (dots) for the four-state antiferromagnetic Potts model, 
plotted against the dimensionless inverse temperature l / t  = J /  k,T. 

The MFA solution, which is believed to be the absolutely stable one for the 
antiferromagnetic Potts model with q states per ion, has the following form. The sc 
chemical lattice is divided into interpenetrating FCC sublattices denoted A and B. The 
set of q single-ion states is divided into subsets C and C’, where C contains any iq 
states for q even or any f( q - 1) states for q odd, and where C’ contains the remaining 
ones. Then occupation probabilities, depending on the sublattice and subset, are 
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Table 1. Values of the ordering temperature Tc, the order parameter in the low-temperature 
limit M ( 0 )  and the zero-point entropy per ion S(0) yielded by MFA and MC calculations 
for the antiferromagnetic Potts model with 4 = 3 or 4 states per ion. 

4 = 3  q = 4  

MC M FA MC M FA 

1.28 * 0.04 2 0.68 iO.06 $ k ,  T,/ J 
M ( 0 )  0.85 1 0.87 1 
S(0) 0.376 0.347 0.708 0.693 

assigned as indicated in table 2 ;  for q even or odd the occupation probabilities contain 
one or two parameters, which are determined by minimising the free energy. 

One arrives at MFA solutions of this form as follows (Hoppe and Hirst 1986). First 
one notes that the MFA problem on the sc lattice can be reduced to that on an elementary 
eight-ion cube with periodic boundary conditions. In the limits T = Of and T = T i  it 
is verified by series expansions that solutions of the indicated form are the absolutely 
stable ones. At intermediate temperatures local stability can be verified formally and 
absolute stability can hardly be doubted, although a formal proof has not been 
constructed. (Numerical verification of absolute stability by searching the whole 
parameter space is not feasible since even after reducing the problem to an eight-ion 
cube the general MFA trial state contains S ( q  - 1)  = 16 or 24 independent parameters.) 

The temperature dependence of the order parameter M (  T )  yielded by the MFA is 
compared to the MC results for q = 3 and 4 in figures 3 and 4. Here the low-temperature 
saturation at a value smaller than unity shown by the MC results is an indication of 
correlations which the M F A  neglects. 

Table 2. Occupation probabilities in stable M F A  solutions for the antiferromagnetic Potts 
model with 4 states per ion. Here A and B label two interpenetrating FCC sublattices; C 
and C' are substets of single-ion states and p and p '  are variational parameters fixing the 
populations. 

4 Sublattice Subset Probability 

Even A C 
C' 

B C 
C' 

Odd A C 
C' 

B C 
C' 

4. Discussion and conclusions 

We have investigated the antiferromagnetic Potts model with q = 3 or 4 states per ion 
by means of Monte Carlo ( M C )  calculations and the mean-field approximation (MFA).  

In agreement with Banavar et a1 (1982), for both q = 3 and q = 4 we find a continuous 
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phase transition, leading to long-range order with two interpenetrating FCC sublattices. 
The ordering tendencies are less pronounced for q = 4 than for q = 3, as shown by the 
smoother increase of the MC order parameter against decreasing temperature (figures 
3 and 4). This weaker ordering tendency in the y = 4  model may be related to the 
larger zero-point entropy, the MC value of which is 51% of that at T = m. Zero-point 
entropies as large as this are usually characteristic of models where long-range order 
is absent, the classical example being the Ising antiferromagnet on the two-dimensional 
triangular lattice (Wannier 1950), where the entropy at T = 0 is 49% of that at T = a. 

Our MC computer experiments were analysed by evaluating not only the order 
parameter and thermodynamic functions but also the correlation function for ion pairs 
as a function of the separation, f(R). At high temperatures f(R) indicates only 
short-range order, decaying quickly with increasing R toward the value l / q  correspond- 
ing to uncorrelated pairs. At low temperaturesf( K )  oscillates between different limiting 
values for R even or odd, providing clear evidence of long-range order in the above 
sublattice scheme. Our experience with this and related models (Hoppe and Hirst 
1986) indicates that such an analysis of MC computations via the correlation function 
provides an indication of the existence of a phase transition in the infinite lattice which 
is substantially more direct and unambiguous than can be obtained by looking for 
incipient singularities in the thermodynamic functions, especially when the phase 
transition is continuous as in the present case. The present technique also compares 
favourably with analysis via a global order parameter because it separately exhibits 
the contributions from short-range order, which can give the order parameter a finite 
value in a finite sample even when genuine long-range ordering does not occur. 

The simpler MFA method is also of interest despite its known tendency to exaggerate 
ordering effects. For the antiferromagnetic q-state Potts model, the MFA is found to 
imply long-range order for all q, whereas the ‘satiation’ effect (Hoppe et al 1983) 
implies that long-range order should disappear for sufficiently large q and the MC 

calculations of Banavar et a1 (1982) suggest that it is already absent at q = 5. Neverthe- 
less, the MFA is found to work reasonably well for q = 3 and even for q = 4, as indicated 
by the comparison in table 1 of the MFA and MC results for the ordering temperature, 
the order parameter at T = 0 and the zero-point entropy per ion. 
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